Forensic Analysis of Recrystallized Inorganic Oxidizing Salts Used in
Pyrotechnic-Based Improvised Explosive Devices Using Light Microscopy and Micro-Raman Spectroscopy
THE MICROSCOPE
2024, Volume 71:1, pp. 3–13
DOI
https://doi.org/10.59082/INDJ3392
AUTHORS
Jared Estevanes, Patrick Buzzini, and Geraldine Monjardez
ABSTRACT
This study aimed to evaluate the advantages and challenges of analyzing post-blast pyrotechnic pipe bombs using a combination of light microscopy and micro-Raman spectroscopy. Two simulated improvised explosive devices (IEDs) were constructed and exploded using pyrotechnics as the main charge and consisted of several different components to simulate common materials that might be found in authentic bombing scenarios.
In order to develop a rapid explosives residue recovery technique, a wet and dry swabbing process was compared to determine the most efficient swabbing method of recovery for inorganic oxidizers in post-blast debris. Samples were recrystallized using a water recrystallization method followed by in situ analysis using polarized light microscopy (PLM) and micro-Raman spectroscopy, targeting euhedral and subhedral crystals. While the water recrystallization had effects on the resulting Raman spectrum, such as peak intensity reduction, ultimately, the final salt identifications were not affected. The detection of several inorganic oxidizers post-blast included the identification of potassium perchlorate (KClO4), potassium nitrate (KNO3), and barium nitrate (Ba(NO3)2). The detection of KNO3 using microscopy alone was more challenging due to its relatively low abundance compared to KClO4 but was achieved with micro-Raman spectroscopy. Additionally, the mixing of inorganic oxidizers within single crystals was also observed.
The results indicated that the combined approach of microscopy and micro-Raman spectroscopy enabled the successful detection of inorganic oxidizing salts in a post-blast scenario, as well as describing the advantages and limitations of this combination of techniques.
In order to develop a rapid explosives residue recovery technique, a wet and dry swabbing process was compared to determine the most efficient swabbing method of recovery for inorganic oxidizers in post-blast debris. Samples were recrystallized using a water recrystallization method followed by in situ analysis using polarized light microscopy (PLM) and micro-Raman spectroscopy, targeting euhedral and subhedral crystals. While the water recrystallization had effects on the resulting Raman spectrum, such as peak intensity reduction, ultimately, the final salt identifications were not affected. The detection of several inorganic oxidizers post-blast included the identification of potassium perchlorate (KClO4), potassium nitrate (KNO3), and barium nitrate (Ba(NO3)2). The detection of KNO3 using microscopy alone was more challenging due to its relatively low abundance compared to KClO4 but was achieved with micro-Raman spectroscopy. Additionally, the mixing of inorganic oxidizers within single crystals was also observed.
The results indicated that the combined approach of microscopy and micro-Raman spectroscopy enabled the successful detection of inorganic oxidizing salts in a post-blast scenario, as well as describing the advantages and limitations of this combination of techniques.