$ Donate
  • Course Schedule
    • 2025 Course Calendar
    • Additional Course Information
    • Directions and Transportation
    • Hotels
  • Inter/Micro Conference
    • About Inter/Micro 2025
    • Abstract Submission Guidelines
    • Exhibitor & Sponsor Registration
    • Workshop: Paper Fiber Microscopy
    • SMSI Silent Auction
    • Photomicrography Competition
    • Directions and Transportation
    • Hotels
  • The Microscope Journal
    • About The Microscope Journal
    • Subscriptions and Renewals
    • Guide for Authors
    • The Microscope Vol. 71:4 2024
    • The Microscope Vol. 71:3 2024
    • The Microscope Vol. 71:2 2024
    • The Microscope Vol. 71:1 2024
    • The Microscope Vol. 70:4 2023
    • The Microscope Vol. 70:3 2023
    • The Microscope Vol. 70:2 2023
    • The Microscope Vol. 70:1 2023
    • The Microscope Vol. 69:4 2022
    • The Microscope Vol. 69:3 2022
    • The Microscope Vol. 69:2 2022
    • The Microscope Vol. 69:1 2022
    • The Microscope Vol. 68:3/4 2020
    • The Microscope Vol. 68:2 2020
    • The Microscope Vol. 68:1 2020
    • The Microscope Vol. 67:4 2019
    • The Microscope Vol. 67:3 2019
    • The Microscope Vol. 67:2 2019
    • The Microscope Vol. 67:1 2019
    • The Microscope Vol. 66:4 2018
    • The Microscope Vol. 66:3 2018
    • The Microscope Vol. 66:2 2018
    • The Microscope Vol. 66:1 2018
  • Publications
    • Books, Charts, Graphs, Etc.
    • Videos
  • Research
    • Analytical Laboratory Research
    • About Research at McCrone
    • Isabella Stewart Gardner Museum Theft
    • The Vinland Map
    • Shroud of Turin Research at McCrone
    • The Latest McCrone Shroud Update
  • About and Contact
    • About Lucy B. McCrone
    • About Walter C. McCrone
    • Contact
    • Privacy and Other Policies

Detection of Erionite and Other Zeolite Fibers in Soil by the Fluidized Bed Preparation Methodology

THE MICROSCOPE
2019, Volume 67:4, pp. 147–158
DOI
https://doi.org/10.59082/EMGD5649
AUTHORS
David Berry, Jed Januch, Lynn Woodbury, and Douglas Kent
ABSTRACT
Erionite is a zeolite mineral that can occur as fibrous particles in soil. Inhalation exposure to erionite fibers may result in increased risk of diseases, such as mesothelioma. Low level detection of mineral fibers in soils has traditionally been accomplished using polarized light microscopy (PLM) methods to analyze bulk samples providing detection limits of around 0.25% by weight. This detection level may not be sufficiently low enough for protection of human health and is subject to large variability between laboratories. The fluidized bed asbestos segregator (FBAS) soil preparation method uses air elutriation to separate mineral fibers, such as erionite, from soil particles with higher aerodynamic diameter and deposits those mineral fibers onto filters that can be quantitatively analyzed by microscopic techniques, such as transmission electron microscopy (TEM). In this study, performance evaluation (PE) standards of erionite in soil with nominal concentrations ranging from 0.1% to 0.0001% by weight were prepared using the FBAS soil preparation method and the resulting filters were analyzed by TEM. The analytical results of this study illustrate a linear relationship between the nominal concentration of erionite (as % by weight) in the PE standard and the concentration estimated by TEM analysis expressed as erionite structures per gram of test material (s/g). A method detection limit of 0.003% by weight was achieved, which is approximately 100 times lower than typical detection limits for soils by PLM. The FBAS soil preparation method was also used to evaluate authentic field soil samples to better estimate the concentrations of erionite in soils on a weight percent basis. This study demonstrates the FBAS preparation method, which has already been shown to reliably detect low levels of asbestos in soil, can also be used to quantify low levels of erionite in soil.
Subscribe to The Microscope
McCrone Research Institute
A Not-for-Profit Corporation
2820 South Michigan AvenueChicago, IL 60616-3230 (312) 842-7100 (312) 842-1078 (fax)
Copyright © 2025 McCrone Research Institute, Inc.

We use cookies to enable essential functionality on our website, and analyze website traffic. By clicking Accept you consent to our use of cookies. Read about how we use cookies.

Your Cookie Settings

We use cookies to enable essential functionality on our website, and analyze website traffic. Read about how we use cookies.

Cookie Categories
Essential

These cookies are strictly necessary to provide you with services available through our websites. You cannot refuse these cookies without impacting how our websites function. You can block or delete them by changing your browser settings, as described under the heading "Managing cookies" in the Privacy and Cookies Policy.

Analytics

These cookies collect information that is used in aggregate form to help us understand how our websites are being used or how effective our marketing campaigns are.